Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Shear Stress on Extracellular Matrix Production of Synovium-Derived Cells

[+] Author Affiliations
Hiroki Sudama, Atsushi Ogawa, Kei Saito, Hiromichi Fujie

Kogakuin University, Tokyo, Japan

Wataru Ando, Norimasa Nakamura

Osaka University Graduate School of Medicine, Osaka, Japan

Paper No. SBC2009-206331, pp. 753-754; 2 pages
  • ASME 2009 Summer Bioengineering Conference
  • ASME 2009 Summer Bioengineering Conference, Parts A and B
  • Lake Tahoe, California, USA, June 17–21, 2009
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-4891-3
  • Copyright © 2009 by ASME


It is well known that various fibrous tissue such as tendons and ligaments functionally adapt to dynamic and static loads. Although a variety of biomechanical studies have been done to deterimine the mechanism of remodeling in fibrous tissues, it was difficult to obtain detailed information because of complicated condstitution of the tissues. We have developed a stem cell-based self-assembled tissue (scSAT) [1] for tissue engineering. Since the scSAT is consisted of synovium-derived mesenchyaml stem cells and their native extracellular matrix, it is a good experimental model to determine the process of remodeling of fibrous tisues. However, the response of shear stress to the scSAT specimen has not been determined so far, although such data are important for understanding of soft tissue remodeling and for improvement of regenerative medicine. Therefore, the present study was performed to determine the effect of shear stress on the extracellular matrix production of synovium-derived cells including mesenchymal stem cells.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In