0

Full Content is available to subscribers

Subscribe/Learn More  >

Microstructurally Motivated Constitutive Models for Mouse Arteries

[+] Author Affiliations
Laura Hansen, William Wan, Rudolph Gleason

Georgia Institute of Technology, Atlanta, GA

Paper No. SBC2009-206768, pp. 577-578; 2 pages
doi:10.1115/SBC2009-206768
From:
  • ASME 2009 Summer Bioengineering Conference
  • ASME 2009 Summer Bioengineering Conference, Parts A and B
  • Lake Tahoe, California, USA, June 17–21, 2009
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-4891-3
  • Copyright © 2009 by ASME

abstract

Vascular remodeling occurs as cells sense changes in their mechanical environment. Thus, quantifying the cells’ local environment in terms of stress and strain distributions is an important aspect in studies of vascular remodeling. Knowledge of the constitutive behavior of vessel will allow the local stresses and strains to be calculated given applied loads and geometry. The goal of this study is to determine material parameters for several constitutive models by fitting biaxial testing data from mouse carotid arteries cultured under different axial loading conditions [1].

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In