0

Full Content is available to subscribers

Subscribe/Learn More  >

Gait Prediction Using Concurrent Musculoskeletal Control and FE Simulations

[+] Author Affiliations
Jason P. Halloran, Marko Ackermann, Ahmet Erdemir, Antonie J. van den Bogert

The Cleveland Clinic, Cleveland, OH

Paper No. SBC2009-206525, pp. 1215-1216; 2 pages
doi:10.1115/SBC2009-206525
From:
  • ASME 2009 Summer Bioengineering Conference
  • ASME 2009 Summer Bioengineering Conference, Parts A and B
  • Lake Tahoe, California, USA, June 17–21, 2009
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-4891-3
  • Copyright © 2009 by ASME

abstract

Current computational methods of simulating activities of daily living (ADL) have primarily consisted of musculoskeletal simulations [1]. Due to computational expense, simulations generally include assumptions which simplify joint or soft-tissue behavior. Joints are modeled as hinge or spherical and soft-tissue effects are included as spring-dashpot systems. Incorporating detailed deformable soft-tissue models would help overcome simplifying assumptions by coupling the behavior of a muscle loaded model with the underlying structures. Important clinical applications for a multi-domain simulation framework include, but are hardly limited to, predicting modifications to ADL to compensate for osteoarthritic pain or minimizing peak plantar pressures, which are believed to be significant for diabetic foot ulceration.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In