0

Full Content is available to subscribers

Subscribe/Learn More  >

Control of Neural Lineage Differentiation in an Alginate Encapsulation Microenvironment via Cellular Aggregation

[+] Author Affiliations
Lulu Li, Uday Chippada, Rene Schloss, Noshir Langrana, Martin Yarmush

Rutgers, The State University of New Jersey, Piscataway, NJ

Alexander Davidovich

New York College of Osteopathic Medicine of New York Institute of Technology, Old Westbury, NY

Jennifer Schloss

Barnard College, Columbia University, New York, NY

Paper No. SBC2009-206496, pp. 1073-1074; 2 pages
doi:10.1115/SBC2009-206496
From:
  • ASME 2009 Summer Bioengineering Conference
  • ASME 2009 Summer Bioengineering Conference, Parts A and B
  • Lake Tahoe, California, USA, June 17–21, 2009
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-4891-3
  • Copyright © 2009 by ASME

abstract

Cell replacement therapies, which utilize renewable stem cell sources, hold tremendous potential to treat a wide range of degenerative diseases. Although many studies have established techniques to successfully differentiate stem cells into different mature cell lineages, their practicality is limited by the lack of control during the differentiation process and low yields of differentiated cells. In order to address these issues, we have previously established a murine embryonic stem cell alginate-poly-L-lysine microencapsulation differentiation system [1]. We demonstrated that ES cell differentiation could be mediated by cell-cell aggregation in the encapsulation microenvironment. We have demonstrated that both cell aggregation and hepatocyte functions, such as urea and albumin secretions, as well as increased expression of cytokeratin 18 and cyp4507a, occur concomitantly with surface E-cadherin expression [2]. In the present studies, we assessed the feasibility of inducing neuronal lineage differentiation in the alginate microenvironment by incorporating soluble inducers, such as retinoic acid, into the permeable microcapsule system. We demonstrated decreased cell aggregation and enhanced neuronal lineage differentiation with the expression of various neuronal specific markers, including neurofilament, A2B5, O1 and glial fibrillary acidic protein (GFAP). In addition, we demonstrated that, by blocking the cell aggregation using anti-E-cadherin antibody, encapsulated cells increased neuronal marker expression at a later stage of the encapsulation, even in the absence of retinoic acid. In conjunction with the mechanical and physical characterizations of the alginate crosslinking network, we show that 2.2% alginate concentration is most conducive to neuronal differentiation from embryonic stem cells in the presence of retinoic acid.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In