Full Content is available to subscribers

Subscribe/Learn More  >

Performance and Boundary Layer Development of a High Turning Compressor Cascade at Sub- and Supercritical Flow Conditions

[+] Author Affiliations
Christoph Bode, Dragan Kožulović, Udo Stark

Technische Universität Braunschweig, Braunschweig, Germany

Heinz Hoheisel

DLR Braunschweig, Institute of Aerodynamics and Flow Technology, Braunschweig, Germany

Paper No. GT2012-68382, pp. 49-61; 13 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 8: Turbomachinery, Parts A, B, and C
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4474-8
  • Copyright © 2012 by ASME


Based on current numerical investigations, the present paper reports on new Q2D midspan-calculations and results for the well known high turning (Δβ = 50°) supercritical (Ma1 = 0.85) compressor cascade V2. A Q2D treatment of the problem was chosen in order to avoid the difficult modelling of the porous endwalls in a corresponding 3D approach. All simulations were done with the RANS solver TRACE of the DLR Cologne in combination with modified versions of the Wilcox turbulence model and Langtry/Menter transition model. Existing experimental Q2D midspan-results for the V2 compressor cascade were used to demonstrate the improved ability of the numerical code to determine performance characteristics, blade pressure and Mach number distributions as well as boundary layer parameter and velocity distributions. The loss characteristics show minimum loss regions when plotted against inlet angle or axial velocity density ratio. Within these regions, increasing with decreasing Mach number, the experimental results were adequately predicted. Outside these regions it turned out difficult to reproduce the experimental results due to increasing boundary layer separation. Furthermore, the prediction quality was very good for subsonic conditions (Ma1 = 0.60) and still reasonable for supercritical conditions (Ma1 = 0.85), where shock/boundary layer interaction made the prediction more difficult.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In