0

Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady Simulation of a 1.5 Stage Turbine Using an Implicitly Coupled Nonlinear Harmonic Balance Method

[+] Author Affiliations
Chad H. Custer, William S. Clark

CD-adapco, Northville, MI

Jonathan M. Weiss

CD-adapco, Lebanon, NH

Venkataramanan Subramanian

CD-adapco, Bangalore, KA, India

Kenneth C. Hall

Duke University, Durham, NC

Paper No. GT2012-69690, pp. 2303-2317; 15 pages
doi:10.1115/GT2012-69690
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 8: Turbomachinery, Parts A, B, and C
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4474-8
  • Copyright © 2012 by ASME

abstract

The harmonic balance method implemented within STAR-CCM+ is a mixed frequency/time domain computational fluid dynamic technique, which enables the efficient calculation of time-periodic flows. The unsteady solution is stored at a small number of fixed time levels over one temporal period of the unsteady flow in a single blade passage in each blade row; thus the solution is periodic by construction. The individual time levels are coupled to one another through a spectral operator representing the time derivative term in the Navier-Stokes equation, and at the boundaries of the computational domain through the application of periodic and nonreflecting boundary conditions. The blade rows are connected to one another via a small number of fluid dynamic spinning modes characterized by nodal diameter and frequency. This periodic solution is driven to the correct solution using conventional (steady) CFD acceleration techniques, and thus is computationally efficient. Upon convergence, the time level solutions are Fourier transformed to obtain spatially varying Fourier coefficients of the flow variables. We find that a small number of time levels (or, equivalently, Fourier coefficients) are adequate to model even strongly nonlinear flows. Consequently, the method provides an unsteady solution at a computational cost significantly lower than traditional unsteady time marching methods.

The implementation of this nonlinear harmonic balance method within STAR-CCM+ allows for the simulation of multiple blade rows. This capability is demonstrated and validated using a 1.5 stage cold flow axial turbine developed by the University of Aachen. Results produced using the harmonic balance method are compared to conventional time domain simulations using STAR-CCM+, and are also compared to published experimental data. It is shown that the harmonic balance method is able to accurately model the unsteady flow structures at a computational cost significantly lower than unsteady time domain simulation.

Copyright © 2012 by ASME
Topics: Simulation , Turbines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In