Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Aerodynamic Performance of Boundary-Layer-Ingesting Inlet Under Crosswind

[+] Author Affiliations
Meng-Sing Liou, Byung Joon Lee

NASA Glenn Research Center, Cleveland, OH

Paper No. GT2012-68509, pp. 1977-1989; 13 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 8: Turbomachinery, Parts A, B, and C
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4474-8


NASA has been studying future transport concepts, envisioned to be technically realizable in the timeframe of 2020–2030, to meet environmental and performance goals. One concept receiving considerable interest involves a propulsion system embedded into a hybrid wingbody aircraft. While offering significant advantages in fuel savings and noise reduction by this concept, there are several technical challenges that are not encountered in the current fleet and must be overcome so as to deliver target performance and operability. One of these challenges is associated with an inlet system that ingests a significantly thick boundary layer, developing along the wingbody surface, into a serpentine diffuser before the flow meeting fan blades. The flow is subject to considerable total pressure loss and distorted at the fan face, much more significantly than in the inlet system of conventional aircraft. In our previous studies [1, 2], we have shown that through innovative design changes on the airframe surface, it is possible to simultaneously increase total pressure recovery and decrease distortion in the flow, without resorting to conventional penalty-ridden flow control concepts, such as vortex generator or boundary layer bleeding/suction. In the current study, we are interested in understanding the following issues: how the embedded propulsion system performs under a crosswind condition by studying in detail the flow characteristics of two inlets, the baseline and another optimized previously under the cruise condition. With the insight, it is hoped that it can help in the follow-on study by devising effective strategies to minimize flow distortion arising from the integration of an embedded-engine system into an airframe to the level acceptable to the operation of engine fan.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In