Full Content is available to subscribers

Subscribe/Learn More  >

Improving Tilting-Pad Journal Bearing Predictions: Part I—Model Development and Impact of Rotor-Excited Versus Bearing-Excited Impedance Coefficients

[+] Author Affiliations
Jason C. Wilkes

Southwest Research Institute, San Antonio, TX

Dara W. Childs

Texas A&M University, College Station, TX

Paper No. GT2012-69804, pp. 965-978; 14 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME


The floating-bearing-test-rig concept was initially developed by Glienicke in 1966 and has since been used to test many tilting-pad journal bearings (TPJBs). The impedances measured during these tests have been compared to rotor/journal perturbed impedance predictions. Since the inertial acceleration of a pad is different for bearing perturbed and rotor perturbed motions, the bearing’s reaction force components for bearing perturbed and journal perturbed motions will also differ. An understanding of how bearing perturbed and rotor perturbed impedances differ is needed to assess the validity of past, present, and future comparisons between TPJB test data and predictions.

A new TPJB perturbation model is developed including the effects of angular, radial, and transverse pad motion and changes in pad clearance due to pad bending compliance. Though all of these pad variables have previously been included in different analyses, there are no publications containing perturbations of all four variables. In addition, previous researchers have only perturbed the rotor, while both the bearing and rotor motions are perturbed in the present analysis. The applicability of comparing rotor-perturbed bearing impedance predictions to impedances measured on a bearing-perturbed test rig is assessed by comparing rotor perturbed and bearing perturbed impedance predictions for an example bearing.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In