Full Content is available to subscribers

Subscribe/Learn More  >

Comparison Between Numerical and Experimental Dynamic Coefficients of a Hybrid Aerostatic Bearing

[+] Author Affiliations
Mohamed Amine Hassini

Institut Pprime, Poitiers, FranceCentre National d’Etudes Spatiales, Paris, France

Mihai Arghir

Institut Pprime, Poitiers, France

Manuel Frocot

Snecma, Vernon, France

Paper No. GT2012-69090, pp. 921-931; 11 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME


Hybrid journal bearings are considered since many years as a possible replacement for ball bearings in turbo-pumps used by the aerospace industry. Due to flow regimes dominated by inertia and due to the nature of the lubricant (cryogenic fluids), the prediction of the linearized dynamic coefficients in these bearings must be based on the compressible bulk-flow equations. Theoretical models based on these equations were validated for hybrid bearings working with water or for liquid or gas annular seals. Validations for hybrid compressible bearings are missing. Experimental data obtained for an air lubricated hybrid aerostatic bearing designed with shallow pockets were recently presented; the data consist of linearized dynamic coefficients obtained for rotation speeds up to 50 krpm and up to 7 bar feeding pressure. The present work introduces a consolidated numerical approach for predicting static and linearized dynamic characteristics. Theoretical predictions are based on bulk flow equations in conjunction with CFD analysis. It was found that for a given feeding pressure, the value of the pressure downstream the orifice has a major influence on all results. Special care was then taken for describing the complex flow in the feeding system and the orifice. Three dimensional CFD was employed because the bulk-flow equations are inappropriate in this part of the bearing. The pressure downstream the orifice stemming from CFD results and the feeding pressure were next imposed in the bulk flow model and the equivalent area of the orifice was obtained from the numerical solution of the steady flow in the bearing. Since the pockets of the hybrid bearing are shallow, this equivalent area is considered as being the harmonic average of the orifice cross section area and of the cylindrical curtain area located between the orifice and the rotor. The comparisons between theoretical dynamic coefficients and experimental data validated this approach of the equivalent area of the orifice.

Copyright © 2012 by ASME
Topics: Bearings



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In