Full Content is available to subscribers

Subscribe/Learn More  >

Steady-State Control of Hybrid Foil-Magnetic Bearings

[+] Author Affiliations
Ye Tian, Yanhua Sun, Lie Yu

Xi’an Jiaotong University, Xi’an, Shaanxi, China

Paper No. GT2012-68394, pp. 849-857; 9 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME


A hybrid foil-magnetic bearing is combination of a foil bearing and a magnetic bearing, which takes advantages of both bearings while compensating each other the weaknesses. It is a solution of friction and wear of foil bearings at low speeds and limited load capacity of magnetic bearings. Furthermore, load sharing and control of dynamics can be achieved in a hybrid foil-magnetic bearing. However, in the hybrid foil-magnetic bearing, the journal should run at certain eccentricity and attitude angle in order to take part of the loads, but the magnetic bearing would attempt to force the journal to the reference position at all times while using a conventional PID controller. Therefore, it is necessary to design a new control algorithm to overcome the contradictions. In this paper, the steady-state characteristics of a hybrid foil-magnetic bearing were analyzed. Then a searching algorithm was presented and a steady-state controller was designed to determine the steady-state working position of the hybrid foil-magnetic bearings. Finally, simulations were done to verify performances of the searching algorithm and designed steady-state controller, and the results show its validity.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In