0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Nonlinear Dynamics of Two Types of Backup Bearings: Theoretical and Experimental Aspects

[+] Author Affiliations
Said Lahriri

Technical University of Denmark, Kgs. Lyngby, DenmarkLloyd’s Register ODS, Hellerup, Denmark

Ilmar F. Santos

Technical University of Denmark, Kgs. Lyngby, Denmark

Hans I. Weber

Pontifícia Universidade Católica - Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Henning Hartmann

Lloyd’s Register ODS, Hellerup, Denmark

Paper No. GT2012-68319, pp. 805-821; 17 pages
doi:10.1115/GT2012-68319
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME

abstract

The possible contact between rotor and stator can for some cases be considered as a serious malfunction that may lead to catastrophic failure. Rotor rub is considered a secondary phenomenon caused by a primary source that leads to a disruption of the normal operational condition. It arises from sudden mass unbalance, instabilities generated by aerodynamic and hydrodynamic forces in seals and bearings among others.

The contact event gives rise to normal and friction forces exerted on the rotor at impact events. The friction force plays a significant role by transferring some rotational energy of the rotor to lateral motion, impacting the stator. This event results in persistent coupled lateral vibration of the rotor and stator. This paper proposes a new unconventional backup bearing design in order to reduce the rub related severity in friction. The idea is to utilize pin connections that center the rotor during impacts. In this way, the rotor is forced to the center and the lateral motion is mitigated. The four pins are passively adjustable, which allows the clearance to be customized.

A mathematical model has been developed to capture phenomena arising from impact for the conventional backup bearing (annular guide) as well for the new disk-pin backup bearing. For the conventional annular guide setup, it is reasonable to superpose an impact condition to the rub, where the rotor spin energy can be fully transformed into rotor lateral movements. Using a non ideal drive, i.e. an electric motor without any kind of velocity feedback control, it is even possible to almost stop the rotor spin under rubbing conditions. All the rotational energy will be transformed in a kind of “self-excited” rotor lateral vibration with repeated impacts against the housing. The vibration of the housing is coupled through the interaction force.

The experimental and numerical analysis shows that for the conventional annular guide setup, the rotational energy is fully transformed into lateral motion and the rotor spin is stopped. However, by employing the new disk-pin design the analysis shows that the rotor at impacts is forced to the center of the backup bearing and the lateral motion is mitigated. As a result of this, the rotor spin is kept constant.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In