0

Full Content is available to subscribers

Subscribe/Learn More  >

Controlled Deflection Approach for Rotor Crack Detection

[+] Author Affiliations
Zbigniew Kulesza

Bialystok University of Technology, Bialystok, Poland

Jerzy T. Sawicki

Cleveland State University, Cleveland, OH

Paper No. GT2012-68960, pp. 583-592; 10 pages
doi:10.1115/GT2012-68960
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME

abstract

A transverse shaft crack is a serious malfunction that can occur due to cyclic loading, creep, stress corrosion, and other mechanisms to which rotating machines are subjected. Though studied for many years, the problems of early crack detection and warning are still in the limelight of many researchers. This is due to the fact that the crack has subtle influence on the dynamic response of the machine and still there are no widely accepted, reliable methods of its early detection.

This paper presents a new approach to these problems. The method utilizes the coupling mechanism between the bending and torsional vibrations of the cracked, non-rotating shaft. By applying an external lateral force of constant amplitude, a small shaft deflection is induced. Simultaneously, a harmonic torque is applied to the shaft inducing its torsional vibrations. By changing the angular position of the lateral force application, the position of the deflection also changes opening or closing of the crack. This changes the way the bending and torsional vibrations are being coupled. By studying the coupled lateral vibration response for each angular position of the lateral force one can assess the possible presence of the crack.

The approach is demonstrated with a numerical model of a rotor. The model is based on the rigid finite element method (RFE), which has previously been successfully applied for the dynamic analysis of many complicated, mechanical structures. The RFE method is extended and adopted for the modeling of the cracked shafts. An original concept of crack modeling utilizing the RFE method is presented. The crack is modeled as a set of spring-damping elements (SDEs) of variable stiffness connecting two sections of the shaft. By calculating the axial deformations of the SDEs, the opening/closing mechanism of the crack is introduced.

The results of numerical analysis demonstrate the potential of the suggested approach for effective shaft crack detection.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In