0

Full Content is available to subscribers

Subscribe/Learn More  >

Jet Engine Design Optimization Using a Knowledge-Based Master Model

[+] Author Affiliations
Ilya Tyapin

University of Agder, Grimstad, Norway

Marcus Sandberg, Michael Kokkolaras

Lulea University of Technology, Lulea, Sweden

Anders Lundbladh, Ola Isaksson

Volvo Aero Corporation, Trollhattan, Sweden

Paper No. GT2012-69309, pp. 41-47; 7 pages
doi:10.1115/GT2012-69309
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME

abstract

This paper presents a preliminary design optimization study of a jet engine structure using a knowledge-based master modeling approach. The objective function is derived based on input-output relationships of a cost-performance model, where specific fuel consumption, pressure loss and direct cost are considered. The advantage of this problem formulation is that it entails a single composite objective function that takes into account mass, structural characteristics, dynamic response and translates them to a direct operational cost function to be minimized. A fan-blade-off scenario is considered as the loading case in this paper. The loss of one fan blade during nominal operation causes a rotor imbalance and structural deformation.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In