0

Full Content is available to subscribers

Subscribe/Learn More  >

Analytical Prediction of Fatigue Crack Growth Behavior Under Biaxial Loadings

[+] Author Affiliations
Ragupathy Kannusamy

Honeywell Technology Solutions Lab, Bangalore, India

K. Ramesh

Indian Institute of Technology Madras, Chennai, India

Paper No. GT2012-69480, pp. 311-321; 11 pages
doi:10.1115/GT2012-69480
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME

abstract

Aircraft and pressure vessel components experience stresses that are negative biaxial or multiaxial in nature. Biaxiality is defined as the ratio of stress applied parallel and normal to the crack front. In recent years many experimental studies have been conducted on fatigue crack growth under various biaxial loading conditions. Biaxial loadings affect crack front stresses and strains, fatigue crack growth rate and direction, and crack tip plastic zone size and shape. Many of these studies have focused on positive biaxial loading cases. No conclusive study has been reported out yet that accurately quantifies the influence of negative biaxiality on fatigue crack growth behavior. Lacking validation, implementation on real life problems remains questionable. To ensure safe and optimum designs, it is necessary to better understand and quantify the effect of negative biaxial loading on fatigue crack behavior.

In this paper, attempts were made to quantify the effect of biaxial load cases ranging from B = −0.5 to 1.0 on fatigue crack growth behavior. Also an attempt has been made to establish a simplified approach to incorporate the effect of biaxiality into da/dN curves generated from uniaxial loading using an analytical approach without conducting expensive biaxial crack growth testing. Sensitivity studies were performed with existing test data available for AA2014-T6 aluminum alloy. Detailed elastic–plastic finite element analyses were performed with different stress ranges and stress ratios with various crack sizes and shapes on notched and un-notched geometries. Constant amplitude loads were applied for the current work and comparison studies were made between uniaxial and different biaxial loading cases. It was observed from the study that negative biaxiality has a very pronounced effect on the crack growth rate and direction for AA2014-T6 if the externally applied load exceeds 20% of the yield strength as compared with 40% of externally applied load for alloy of steel quoted in the literature.

Copyright © 2012 by ASME
Topics: Fatigue cracks

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In