0

Full Content is available to subscribers

Subscribe/Learn More  >

Analytical Correction of Nonlinear Thermal Stresses Under Thermo-Mechanical Cyclic Loadings

[+] Author Affiliations
Sarendra Gehlot, Pradeep Mahadevan, Ragupathy Kannusamy

Honeywell Technology Solutions Lab, Bangalore, India

Paper No. GT2012-69287, pp. 301-309; 9 pages
doi:10.1115/GT2012-69287
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME

abstract

Automotive turbocharger components frequently experience complex Thermo-Mechanical Fatigue (TMF) loadings which require estimation of nonlinear plastic stresses for fatigue life calculations. These field duty cycles often contain rapid fluctuations in temperatures and consequently transient effects become important. Although current FE software are capable of performing these nonlinear finite element analyses, the turnaround time to compute nonlinear stresses for complex field duty cycles is still quite significant and detailed design optimizations for different duty cycles become very cumbersome. In recent years, a large number of studies have been made to develop analytical methods for estimating nonlinear stress from linear stresses. However, a majority of these consider isothermal cases which cannot be directly applied for thermo-mechanical loading. In this paper a detailed study is conducted with two different existing analytical approaches (Neuber’s rule and Hoffman-Seeger) to estimate the multi-axial nonlinear stresses from linear elastic stresses. For the Neuber’s approach, the multi-axial version proposed by Chu was used to correct elastic stresses from linear FE analyses. In the second approach, Hoffman and Seeger’s method is used to estimate the multiaxial stress state from plastic equivalent stress estimated using Neuber’s method for uniaxial stress. The novelty in the present work is the estimation of nonlinear stress for bilinear kinematic hardening material model under varying temperature conditions. The material properties including the modulus of elasticity, tangent modulus and the yield stress are assumed to vary with temperature. The application of two analytical approaches were examined for proportional and non-proportional TMF loadings and suggestions have been proposed to incorporate temperature dependent material behavior while correcting the plasticity effect into linear stress. This approach can be effectively used for complex geometries to calculate nonlinear stresses without carrying out a detailed nonlinear finite element analysis.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In