0

Full Content is available to subscribers

Subscribe/Learn More  >

New Methods for Automated Fatigue Crack Growth and Reliability Analysis

[+] Author Affiliations
R. Craig McClung, Yi-Der Lee, Michael P. Enright, Wuwei Liang

Southwest Research Institute, San Antonio, TX

Paper No. GT2012-69121, pp. 263-271; 9 pages
doi:10.1115/GT2012-69121
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME

abstract

A new methodology has been developed for automated fatigue crack growth (FCG) life and reliability analysis of components based on finite element (FE) stress and temperature models, weight function stress intensity factor (SIF) solutions, and algorithms to define idealized fracture geometry models. The idealized fracture geometry models are rectangular cross-sections with dimensions and orientation that satisfactorily approximate an irregularly-shaped component cross-section. The fracture model geometry algorithms are robust enough to accommodate crack origins on the surface or in the interior of the component, as well as finite component dimensions, curved surfaces, arbitrary stress gradients, and crack geometry transitions as the crack grows. Stress gradients are automatically extracted from multiple load steps in the FE models for input to the fracture models. The SIF solutions accept univariant stress gradients and have been optimized for both computational efficiency and accuracy. The resulting calculations are used to automatically construct FCG life contours for the component and to identify hot spots. Finally, the new algorithms are used to support automated probabilistic assessments that calculate component reliability considering variability in the size, location, and occurrence rate of the initial anomaly; applied stress magnitudes; material properties; probability of detection; and inspection time. The methods are particularly useful for determining the probability of component fracture due to fatigue cracks forming at material anomalies that can occur anywhere in the volume of the component. The automation significantly improves the efficiency of the analysis process while reducing the dependency of the results on the individual judgments of the analyst. The automation also facilitates linking of the life and reliability management process with a larger integrated computational materials engineering (ICME) context, which offers the potential for improved design optimization.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In