0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Compressive Damage on Tensile Loading Failure of Titanium 6Al-4V

[+] Author Affiliations
Onome Scott-Emuakpor, Tommy George

Air Force Research Laboratory, Wright-Patterson AFB, OH

John Wertz, Casey Holycross

The Ohio State University, Columbus, OH

Paper No. GT2012-69079, pp. 255-261; 7 pages
doi:10.1115/GT2012-69079
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME

abstract

In order to explore the belief that total strain energy accumulation during monotonic tensile fracture is a universal damage parameter, the effect of compressive preloads on specimens failed via tensile loading is analyzed. The motivation behind this analysis is due to the theory of an energy-based life prediction model, which states that the total strain energy required for monotonic tensile fracture is defined as the physical damage quantity for the fatigue lifing model. Two things are observed in order to determine the effects of a compressive preload on tensile monotonic fracture. First, the compressive work is viewed as accumulated damage, thus adding to the total work necessary for failure. Second, tensile works of fractured specimens with and without stored compressive energy are compared to see if the damage parameter is affected. The analysis is conducted through experimental data acquisition from round stock Titanium 6Al-4V dogbone specimens. The results from this study show that compressive damage has a negligible effect on monotonic tensile work to fracture, and combined half-cycle tension and compression preloads have an unnoticeable effect on the tensile work of the final pull to fracture. These results contradict the theory and research validations of the energy-based predictions; however, they provide a platform for future efforts to understand the strain energy correlation between monotonic, low cycle and high cycle failures.

Copyright © 2012 by ASME
Topics: Failure , Titanium , Damage

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In