0

Full Content is available to subscribers

Subscribe/Learn More  >

Damage Parameter Assessment for Energy Based Fatigue Life Prediction Methods

[+] Author Affiliations
Casey M. Holycross, John N. Wertz, Todd Letcher, M.-H. Herman Shen

The Ohio State University, Columbus, OH

Onome E. Scott-Emuakpor, Tommy J. George

Air Force Research Laboratory, Wright-Patterson AFB, OH

Paper No. GT2012-68919, pp. 235-240; 6 pages
doi:10.1115/GT2012-68919
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME

abstract

An energy-based method used to predict fatigue life and critical life of various materials has been previously developed, correlating strain energy dissipated during monotonic fracture to total cyclic strain energy dissipation in fatigue fracture. This method is based on the assumption that the monotonic strain energy and total hysteretic strain energy to fracture is equivalent. The fracture processes of monotonic and cyclic failure modes can be of stark contrast, with ductile and brittle fracture dominating each respectively. This study proposes that a more appropriate damage parameter for predicting fatigue life may be to use low cycle fatigue (LCF) strain energy rather than monotonic energy. Thus, the new damage parameter would capture similar fracture processes and cyclic behavior. Round tensile specimens machined from commercially supplied Al 6061-T6511 were tested to acquire LCF failure data in fully reversed loading at various alternating stresses. Results are compared to both monotonic and cyclic strain energy dissipation to determine if LCF strain energy dissipation is a more suitable damage parameter for fatigue life prediction.

Copyright © 2012 by ASME
Topics: Fatigue life , Damage

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In