0

Full Content is available to subscribers

Subscribe/Learn More  >

Leakage-Induced Compressor Blade Excitation due to Inter-Segment Gaps

[+] Author Affiliations
Ronnie Bladh, Qingyuan Zhuang, Jiasen Hu, Johan Hammar

Siemens Industrial Turbomachinery AB, Finspong, Sweden

Paper No. GT2012-70040, pp. 1621-1632; 12 pages
doi:10.1115/GT2012-70040
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME

abstract

A comprehensive investigation is presented related to leakage-induced blade excitation from shrouded vane segments found in industrial gas turbine compressors. The focus of the investigation is to explore the excitation mechanism acting on downstream rotor blades that stem from the particularly complex leakage flows around the hub inter-segment gaps.

The aerodynamic forces are here determined using 3D nonlinear time-marching CFD simulations. The employed computational model encompasses the two rear-most stages in an existing industrial gas turbine compressor. The inter-segment gap is implemented in the next-to-last stator, varying from no gap to twice the nominal gap size.

Obtained results indicate that the excitation induced by the inter-segment gap leakage flows is distinctly multi-harmonic and unexpectedly strong. As much as five times the excitation strength of upstream wakes was observed already for the nominal gap. The induced unsteady forces were found to derive from two different sources: (i) a large separation producing local forcing in the hub region; and (ii) circumferentially varying flow speed resulting in distributed forcing over the entire blade.

The findings imply that the excitation induced by inter-segment gap leakage flows can be a significant contributor to blade vibratory responses in the intermediate engine order range, and thereby add to the knowledge base related to blade dynamic integrity.

Copyright © 2012 by ASME
Topics: Compressors , Blades , Leakage

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In