Full Content is available to subscribers

Subscribe/Learn More  >

Analysis on Flutter Characteristics of Transonic Compressor Blade Row by a Fluid-Structure Coupled Method

[+] Author Affiliations
Mingming Zhang, Anping Hou, Sheng Zhou, Xiaodong Yang

Beijing University of Aeronautics and Astronautics, Beijing, China

Paper No. GT2012-69439, pp. 1519-1528; 10 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME


A time domain numerical approach is carried out to enhance the understanding of three dimensional blade row aeroelastic characteristics under the parallel computation. The vibration energy of unsteady aerodynamic force on the entire blade row is investigated using numerical solution of 3-D Navier-Stokes equations, coupled with structure finite element models for the blades to identify modal shapes and the structural deformations simultaneously. Interactions between fluid and structure are dealt with in a coupled manner, based on the interface information exchange until convergence in each time step. With this approach good agreement between the numerical results and the experimental data is observed. The flutter mechanism is analyzed according to deformation of the blades. The effect of inter-blade phase angle (IBPA) is included in the analysis by releasing the hypothesis of constant phase angle between adjacent blades in the traveling wave model. The results illustrate fully three dimensional unsteady nonlinear behaviors, such as limit-cycle oscillation. It is shown that all blades flutter at the same mode and frequency, but not at the same amplitude and IBPA. The analysis of the influence of different tip clearance gaps on the flutter characteristics of the blade row is also performed.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In