Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Validation of Fretting Fatigue Strength and Fretting Wear Rate at Contact Surface of Turbine-Blade-Shroud Cover

[+] Author Affiliations
Kunio Asai, Takeshi Kudo, Hideo Yoda

Hitachi Ltd., Hitachi, Ibaraki, Japan

Paper No. GT2012-68576, pp. 149-156; 8 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME


In continuously coupled blade structures, fretting fatigue and wear have to be considered as supposed failure modes at the contact surface of the shroud cover, which is subject to steady contact pressure from centrifugal force and the vibratory load of the blade. We did unique fretting tests that modeled the structure of the shroud cover, where the vibratory load is only carried by the contact friction force, i.e., a type of friction. What was investigated in this study are fretting fatigue strength, wear rate, and friction characteristics, such as friction coefficient and slip-range of 12%-Cr steel blade material. The friction-type tests showed that fretting fatigue strength decreases with the contact pressure and a critical normal contact force exists under which fretting fatigue failure does not occur at any vibratory load. This differs from knowledge obtained through pad-type load carry tests that fretting fatigue strength decreases with the increase of contact pressure and that it almost saturates under a certain contact pressure. Our detailed observation in the friction-type tests clarified that this mechanism was the low contact pressure narrowing the contact area and a resulting high stress concentration at a local area. The fretting wear rate was explained by the dissipated energy rate per cycle obtained from the measured hysteresis loop between the relative slip range and the tangential contact force. This fretting wear rate per cycle is almost the same as the general adhesion wear rate when energy dissipation per cycle is high, and the former is smaller than the latter as the dissipated energy decreases. Finally, to prevent fretting fatigue and wear, we propose an evaluation design chart of the contact surface of the shroud cover based on our friction-type fretting tests.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In