0

Full Content is available to subscribers

Subscribe/Learn More  >

Measurement of Contact Parameters of Flat on Flat Contact Surfaces at High Temperature

[+] Author Affiliations
D. Botto, M. Lavella, M. M. Gola

Politecnico di Torino, Torino, Italy

Paper No. GT2012-69677, pp. 1325-1332; 8 pages
doi:10.1115/GT2012-69677
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME

abstract

In aircraft engines the blade resonant vibration amplitude is normally reduced by increasing the structural damping by using, for example, tip shrouds. These devices dissipate the energy generated at the contact surfaces between the relative motion and the friction force. Contact parameters, principally the friction coefficient and contact stiffness, are required to characterize the dynamics of shrouded blade system. Moreover, if at these contact surfaces severe wear occurs, a loss of interference takes place and the energy dissipated by the shroud decreases. Consequently the blade vibration amplitude increases and a catastrophic blade failure could take place. In this work a test rig for the contact parameter measurements and micro wear characterization of flat-on-flat contact surfaces has been developed. The test rig works at high temperatures of up to 1000 °C, by means of induction heating. One of the specimens was attached to the rig frame, basically an inertial mass and four springs, and subsequently excited by an electromagnetic shaker. The second specimen was allowed to approach the first specimen and to rotate in such a way than the geometric contact between the two surfaces occurred at three points. In this way a real “flat to flat” contact was obtained. The two surfaces were kept in contact by means of a constant normal load. The tangential contact force was measured by a force sensor while the relative displacements between the contact surfaces were measured by two laser vibrometers. The relative displacement was kept under control by acting on the shaker force. Tangential force and relative displacement were used to describe the hysteresis loop and, consequently, to obtain the friction coefficient and contact stiffness during the wear process. The temperature is feedback controlled by using two thermocouples placed within the specimens near the contact surfaces. The expected results are the contact parameters and the wear behaviour of real flat-on-flat contact surfaces. The aim of this work is to describe the design principle of the test rig and present the initial measurements.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In