Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue and Crack Growth in 7050-T7451 Aluminum Alloy Under Constant- and Variable-Amplitude Loading

[+] Author Affiliations
James C. Newman, Jr., Justin W. Shaw

Mississippi State University, Mississippi State, MS

Balkrishna S. Annigeri, Brett M. Ziegler

Pratt & Whitney, East Hartford, CT

Paper No. GT2012-68502, pp. 131-141; 11 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME


The 7050 aluminum alloy is used in many aerospace structural applications. Previous studies have identified that fatigue cracks develop very rough crack-surface profiles, which cause very high crack-closure levels due to a combination of plasticity, roughness and debris. Previously, tests were conducted on compact, C(T), specimens to generate crack-growth data from threshold to near fracture over a wide range in stress ratios (R). New threshold testing methods, based on compression precracking, were used to generate the data in the near-threshold regime. The plasticity-induced crack-closure model, FASTRAN, was used to correlate the data over a wide range in stress ratios and crack-growth rates from threshold to near fracture. To account for the very high crack-closure levels, a very low constraint factor, like plane-stress conditions, had to be used in the model. In addition, the crack-opening loads were measured during these tests using a local strain-gage method to generate another ΔKeff-rate curve. These two curves differed only in the near-threshold regime.

Herein, fatigue-crack-growth tests were conducted on C(T) specimens under spike overloads and simulated aircraft spectrum loading. Also, fatigue tests were conducted on single-edge-notch bend, SEN(B), specimens over a wide range in loading conditions (constant amplitude and three aircraft spectra). All specimens were machined from a single forged block of 7050-T7451. However, no residual stresses were measured in both the SEN(B) and C(T) specimens. Two European standard spectra were used, but modified to have only tension-tension loading. The purpose of this paper was to evaluate the two different effective stress-intensity factor curves for making crack-growth and fatigue-life predictions. Small-crack theory was used to make fatigue-life predictions using inclusion-particle sizes from the literature. Fatigue predictions on the SEN(B) specimens agreed fairly well (± 30%) using a 12-micrometer semi-circular initial flaw located at the semicircular-edge notch under all loading conditions, except the model was unconservative (factor of 3) on one of the severe aircraft spectra (Mini-TWIST+, Level 1). For the C(T) specimens subjected to single-spike overloads, the life-prediction code produced much more retardation than observed in the tests. However, the predicted crack-length-against-cycles under the Mini-Falstaff+ spectrum were only about 15% longer than the tests. The discrepancy under the single-spike overloads and the severe aircraft spectra was suspected to be caused by the low constraint factor and/or crack paths meandering around overload plastic zones. Ideally, a roughness-induced crack-closure model, in addition to the plasticity model, would be needed to obtain more reasonable results.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In