Full Content is available to subscribers

Subscribe/Learn More  >

Shape Memory Effect and Hysteresis Behavior of Shape Memory Alloy Metal Rubber

[+] Author Affiliations
Jie Hong, Baolong Liu, Dayi Zhang, Yanhong Ma

Beijing University of Aeronautics and Astronautics, Beijing, China

Paper No. GT2012-69244, pp. 1275-1281; 7 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME


The present work focuses on the shaping craft of shape memory alloy metal rubber (SMAMR) and its temperature dependent mechanical properties. Heat treatment process was conducted to form a stable SMAMR sample beyond the general procedure of metal rubber (MR) in order to resist the shape memory effect (SME). The influence of the heat treatment procedure on the mechanical properties was tested. The quasi-static experimental investigations were carried out to obtain the storage modulus and energy loss factor varying with the structural parameter, strain amplitude, and material temperature.

It is found from the experiment results that the SMAMR sample which underwent the heat treatment was able to remember its original moulding shape and recover from the overloading plastic deformation when heated above the phase transition temperature. For comparison, another sample without the heat treatment was heated to the same temperature after the plastic deformation, but the final shape deviated from the original one. It is also confirmed that the heat treatment procedure obviously increased the storage modulus and loss factor of SMAMR.

Just like the variety elastic modulus of shape memory alloy (SMA), the storage modulus of SMAMR increased obviously while the material was heated above the phase transformation temperature due to the elastic modulus change of SMA wire. The quasi-static experiments showed a hysteretic property of the stress–strain curve in a certain temperature. But the hysteretic curve was temperature and structural parameter dependent.

It is concluded that the heat treatment process is necessary to obtain a stable SMAMR during the phase transformation. The varying storage modulus and superior loss factor performances of SMAMR make itself a kind of attractive functional material which will be available in the active suppression of vibration. For example, it can be fabricated to a rotor bearing with changeable stiffness and damping, which is of practical significance in the active control of synchronous vibration of rotors crossing resonance condition.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In