Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Contact Dynamics of Vanes With Adjustable Upstream Flow Angles

[+] Author Affiliations
Daniel Schurzig, Sebastian Tatzko, Lars Panning-von Scheidt, Jörg Wallaschek

Leibniz Universität Hannover, Hannover, Germany

Paper No. GT2012-68185, pp. 1169-1179; 11 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME


In this paper, a simulation method is proposed for a sub-category of compressor vanes showing nonlinear behavior due to an adjustable upstream flow angle. The proposed algorithm computes the forced response of a single vane based on the New-mark time stepping scheme after reducing the structural matrices using the Craig-Bampton method. The contacts are modeled by Coulomb friction and Newton impact constraints. Contact forces are determined using linear complementarity conditions with decoupled orthogonal friction force directions. Different discretization methods for the cylindrical contact partners are proposed. Finally, numerical results are shown in order to validate the proposed algorithms.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In