Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Characterization of Tilting Pad Journal Bearings From Component and System Level Testing

[+] Author Affiliations
Adolfo Delgado

GE Global Research Center, Niskayuna, NY

Mirko Librashi, Giuseppe Vannini

GE Oil & Gas, Florence, Italy

Paper No. GT2012-69851, pp. 1007-1016; 10 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 7: Structures and Dynamics, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4473-1
  • Copyright © 2012 by ASME


The dynamic response of a direct lube, 5-pad, rocker-back pivot tilting pad bearing is characterized in a controlled motion (component level) test rig, and in a spin bunker (full system level) using a dummy rotor mounted on two identical bearings. In the component level test, the force coefficients (stiffness, damping, mass) are identified from pseudorandom excitations using a 2-DOF model. N-DOF system including the pad motions has been shown to yield frequency dependent coefficients that warrant the use of asynchronous coefficients for stability analysis in centrifugal compressors. However, experimental results showed that the real part of the dynamic stiffness is well represented as a constant stiffness and mass coefficients while the imaginary part yields a constant damping coefficient (i.e. frequency independent).

In the system level test, a dedicated dummy rotor (representative of a high speed centrifugal compressor rotor) is excited by a magnetic shaker throughout a frequency range covering the rotor modes of interest while spinning at constant speed. From the rotor harmonic response the damping of each mode is extracted using a curve-fitting method based on a 1-DOF model for a given set of speeds.

The dummy rotor test provides reference values for system logarithmic decrement and further validates the component level test results. The logarithmic decrement prediction using identified bearing force coefficients are in good agreement with the experimental results. In addition, using for prediction identified coefficients in a classical K-C-M or synchronous K-C form yields similar results (within 15%). This indicates that for the given bearing geometry (clearance, offset and size) and operating conditions, synchronously reduced force coefficients are adequate for stability analysis. Comparison of the identified force coefficients with results from commercially available code yielded reasonable agreement on direct coefficients while some discrepancies are highlighted on the cross-coupled coefficients.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In