0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Stator Flow Distortion on Rotating Blade Endurance: Part 2—Stress Analysis and Failure Criteria

[+] Author Affiliations
Harold Simmons, Vishwas Iyengar, Timothy C. Allison

Southwest Research Institute, San Antonio, TX

Paper No. GT2012-70013, pp. 213-223; 11 pages
doi:10.1115/GT2012-70013
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 6: Oil and Gas Applications; Concentrating Solar Power Plants; Steam Turbines; Wind Energy
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4472-4
  • Copyright © 2012 by ASME

abstract

Blade vibrations, with the possibility of failure, is one of the major factors controlling the reliability of compressors and turbines. The prospects of encountering high alternating stress environments in blades make efficient turbomachine operation a very challenging task. In many cases the compressor or turbine functions through a wide range of load, flow, temperature, and speed which affect blade vibration, thus the stress environment continuously changes as the operating conditions changes. Any flow disturbance upstream of the rotating blades and some disturbances downstream will produce repetitive wake pulses that excite the blades. Resonance occurs with any coincidence of repetitive pulses with structural natural frequencies of rotating blades or impellers resulting in substantial amplification of alternating stresses. Most OEM design practices control vibratory stresses by avoiding resonance with expected stator sources; those excitations that cannot be avoided are designed with sufficient endurance to prevent failure. Thus three aspects of rotor/ blade design affect reliability: 1) aerodynamic excitation level and frequency, 2) structural response and resonance margins, and 3) selection and control of materials, coatings and their fabrication process to withstand the service environment. The main objective of this study is to develop a mathematical model to simulate the stresses in the rotating blade row that evaluates all three aspects of design to assess long term endurance.

This is a two part paper on high cycle fatigue (HCF) failure analysis procedure of rotating blades and impellers. Part 1 [1] discusses aerodynamic excitation caused by stator vane and its role in generation of blade vibration. Here comprehensive computational fluid dynamics (CFD) is used to get a better understanding of the stator-rotor flow interactions at different operating conditions. The results of the aerodynamic simulations are order related excitation spectrum that can be applied to the stress/pulsation relationship defined in this part of the paper.

This paper, Part 2, discusses an empirical dynamic stress model developed by impulse testing, assessing material endurance strength, and evaluation of criteria for failure by HCF.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In