0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of a Fogging System in a Gas Turbine

[+] Author Affiliations
Freddy Jeanty, Jesús De Andrade, Sergio Croquer, Jorge Luis Clarembaux Correa, Miguel Asuaje

Simon Bolivar University, Valle de Sartenejas, Venezuela

Paper No. GT2012-68808, pp. 913-923; 11 pages
doi:10.1115/GT2012-68808
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4469-4
  • Copyright © 2012 by ASME

abstract

Air cooling via evaporation of water droplets injected at the compressor intake duct is the process known as Fogging System, which is among the most used technologies for increasing output power of gas turbines nowadays. The optimal design of this system must consider numerous variables, such as: air temperature (Ta), air relative humidity (RH), duct geometry, amount of water injected (mw), droplets size (Dd), and nozzles location. Since there are so many variables the flow under study is very complicated. In consequence the analytical determination of an optimal Fogging System design is not feasible. In this paper, a numerical model was developed in order to characterize the injection of water at the air intake duct of a Gas Turbine. First, the expressions characterizing the model were included in the CFD software ANSYS CFX v-11 and simulated in a simple geometry (rectangular duct). Validation of CFD results was carried out by comparison with experimental data. Good agreement between numerical results of a control case and experimental data was achieved (deviation < 2%). Then, the influence of key parameters such as: Ta, RH, Dd, mw over the performance of the air cooling system was investigated. Finally, the model was used to design a Fogging System for an existing 120 MW Gas Turbine. For this gas turbine operating under real conditions, the model predicts a net power increment of 2% [7].

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In