Full Content is available to subscribers

Subscribe/Learn More  >

Aeroacoustic Optimization for Axial Fans With the Lattice-Boltzmann Method

[+] Author Affiliations
Michael Stadler

Ninsight, Graz, Austria

Michael B. Schmitz, Peter Ragg

ebm-papst St. Georgen, St. Georgen, Germany

David M. Holman, Ruddy Brionnaud

Next Limit Technologies, Madrid, Spain

Paper No. GT2012-69081, pp. 743-752; 10 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4469-4
  • Copyright © 2012 by ASME


A set of aeroacoustic optimization strategies for axial fans is presented. Their efficiency is demonstrated for small axial fans. Thereby, the generated noise could be reduced significantly while retaining or even improving the aerodynamic performance.

In particular, we discuss the following two optimization strategies in detail: Firstly, we consider the design of winglets using a parametric model for genetic optimization. The resulting winglet geometry helps to control the tip vortex over a large range of operating points, thereby reducing the generated noise. In addition, the power consumption of the fan could be reduced. Various choices of geometrical parameter sets for optimization are evaluated.

Secondly, we discuss the reduction of fan noise via contour optimized turbulators. For axial fans it is desirable to reduce sound emission across a broad operating range, not just for the design point. However, operation in off-design points may be accompanied by flow separation phenomena, which contribute predominantly to noise generation and reduce the aerodynamic performance of the fan. Turbulators can help to minimize these adverse effects. The advantages of various contoured turbulator geometries are discussed for off-design operating points.

The optimization of the above mentioned strategies was driven by aeroacoustic measurements via physical tests as well as numerical analysis based on the Lattice-Boltzmann method. The merits of either method are discussed with respect to the two optimization strategies.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In