0

Full Content is available to subscribers

Subscribe/Learn More  >

Large-Eddy Simulation of the Aerodynamic and Aero-Acoustic Performance of an Industrial Fan Designed for Tunnel Ventilation

[+] Author Affiliations
Domenico Borello, Stefano Bianchi, Alessandro Corsini, Franco Rispoli

Sapienza Università di Roma, Rome, Italy

Anthony G. Sheard

Flakt Woods Ltd., Colchester, Essex, UK

Paper No. GT2012-69046, pp. 717-729; 13 pages
doi:10.1115/GT2012-69046
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4469-4
  • Copyright © 2012 by ASME

abstract

The development of industrial fans traditionally relies upon the use of empirical correlations and experimental analyses to validate both aerodynamic and acoustic aspects of fan performance. This paper presents the development of a computational based method focused on the prediction of unsteady aerodynamics and modeling of aero-acoustic sources. The authors applied the study to a single fan from a new range of large tunnel ventilation axial flow fans. The fan specification required mechanical and aerodynamic properties that would enable it to operate in the forward direction under ambient conditions to provide cooling air to the tunnel under routine operation, and in the reverse direction at 400°C under emergency conditions in the event of a tunnel fire. The final aerodynamic and mechanical design was additionally required to generate no more than 80 db during reverse operation, to ensure members of the emergency service could still communicate in the event of a fire. The simulations were carried out using the open source code Open-Foam, within which the authors implemented a (Very) Large Eddy Simulation (V)LES based on an one-equation sub-grid scale SGS model to solve a transport equation for the modeled (sub-grid) turbulent kinetic energy. This improvement of the sub-grid turbulence model is here considered as a remedial strategy in VLES of high-Reynolds industrial flows able to tackle the otherwise insufficient resolution of turbulent spectrum. The VLES of the industrial fan permits to detect the flow features such as three-dimensional separation and secondary flows. Predicted noise emissions, in terms of sound pressure level spectra, are compared with experimental results, and found to agree within the uncertainty of the measurements.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In