0

Full Content is available to subscribers

Subscribe/Learn More  >

Simple Parametric Model for Quick Assessment of IGCC Performance

[+] Author Affiliations
S. Can Gülen, Ann V. Driscoll

General Electric, Schenectady, NY

Paper No. GT2012-68301, pp. 557-568; 12 pages
doi:10.1115/GT2012-68301
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4469-4
  • Copyright © 2012 by ASME

abstract

Even though almost all components of an Integrated Gasification Combined Cycle (IGCC) power plant are proven and mature technologies, the sheer number of them, the wide variety of competing technologies (e.g., gasifiers, gas clean-up systems, heat recovery options), system integration options (e.g., cryogenic air separation unit and the gas turbine) including the recent addition of carbon capture and sequestration (CCS) with its own technology and integration options render fundamental IGCC performance analysis a monumental task. Almost all published studies utilize highly complex chemical process and power plant heat balance software, including commercially available packages and in-house proprietary codes. This makes an objective assessment of comparable IGCC plant designs, performance (and cost) and other perceived advantage claims (IGCC versus other technologies, too) very difficult if not impossible.

This paper develops a coherent simplified parametric model based on fully physics-based grounds to be used for quick design performance assessment of a large variety of IGCC power plants with and without CCS. Technology parameters are established from complex model runs and supplemented by extensive literature search. The model is tested using published data to establish its confidence interval and is satisfactory to carry conceptual design analysis at a high level to identify promising alternatives, development areas and assess the realism in competing claims.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In