0

Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Hydrogen Turbine Development Update

[+] Author Affiliations
Tim Bradley, John Marra

Siemens Energy, Orlando, FL

Paper No. GT2012-68169, pp. 537-545; 9 pages
doi:10.1115/GT2012-68169
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4469-4
  • Copyright © 2012 by Siemens Energy Inc.

abstract

Siemens Energy, Inc. was awarded a contract by the U.S. Department of Energy for the first two phases of the Advanced Hydrogen Turbine Development Program. The 3-Phase, multi-year program goals are to develop an advanced syngas, hydrogen and natural gas fired gas turbine fully integrated into coal-based Integrated Gasification Combined Cycle (IGCC) plants.

The program goals include demonstrating:

• A 3–5% point improvement in combined cycle efficiency above the baseline,

• 20–30% reduction in combined cycle capital cost

• Emissions of 2 ppm NOx @ 15% O2 by 2015.

Siemens is currently well into Phase 2 of the program and has made significant progress in several areas. This includes the ability to attain the 2015 Turbine Program performance goals by developing component and systems level technologies, developing and implementing validation test plans for these systems and components, performing validation testing of component technologies, and performance demonstration through system studies.

Siemens and the Advanced Hydrogen Turbine Program received additional funds from the American Recovery and Reinvestment Act (ARRA) in 2010. The additional funding serves to supplement budget shortfalls in the originally planned spend rate.

The development effort has focused on engine cycles, combustion technology development and testing, turbine aerodynamics/cooling, modular component technology, materials/coatings technologies and engine system integration/flexibility considerations. High pressure combustion testing continues with syngas and hydrogen fuels on a modified premixed combustor. Advanced turbine airfoil concept testing continues. Novel manufacturing techniques were developed that allow for advanced castings and faster time to market capabilities. Materials testing continues and significant improvements were made in lifing for Thermal Barrier Coatings (TBC’s) at increased temperatures over the baseline. Studies were conducted on gas turbine/IGCC plant integration, fuel dilution effects, varying air integration, plant performance and plant emissions. The results of these studies and developments provide a firm platform for completing the advanced Hydrogen Turbine technologies development in Phase 2.

Copyright © 2012 by Siemens Energy Inc.
Topics: Turbines , Hydrogen

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In