0

Full Content is available to subscribers

Subscribe/Learn More  >

Lessons Learned From the Development of Courses on Gas Turbine Multi-Disciplinary Conceptual Design

[+] Author Affiliations
Konstantinos G. Kyprianidis, Tomas Grönstedt

Chalmers University of Technology, Gothenburg, Sweden

João R. Barbosa

Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, Brazil

Paper No. GT2012-70095, pp. 513-523; 11 pages
doi:10.1115/GT2012-70095
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4469-4
  • Copyright © 2012 by ASME

abstract

Despite the need for highly qualified experts, multi-disciplinary gas turbine conceptual design has not been a common study topic in traditional post-graduate curriculums. Although many courses on specialised topics in gas turbine technology take place, limited attention is given on connecting these individual topics to the overall engine design process. Teaching conceptual design as part of a post-graduate curriculum, or as an intensive short course, may help to address the industrial need for engineers with early qualifications on the topic i.e., prior to starting their careers in the gas turbine industry.

This paper presents details and lessons learned from: (i) the integration of different elements of conceptual design in an existing traditional MSc course on gas turbine technology through the introduction of group design tasks, and (ii) the development of an intensive course on gas turbine multi-disciplinary conceptual design as a result of an international cooperation between academia and industry.

Within the latter course, the students were grouped in competing teams and were asked to produce their own gas turbine conceptual design proposals within a given set of functional requirements. The main concept behind the development of the new design tasks, and the new intensive course, has been to effectively mimic the dynamics of small conceptual design teams, as often encountered in industry. The results presented are very encouraging, in terms of enhancing student learning and developing engineering skills.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In