0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermodynamic Analysis of a Novel Cryogenic Rankine Cycle for Wind Energy Storage

[+] Author Affiliations
G. Zotter, W. Sanz

Graz University of Technology, Graz, Austria

W. Hermeling

Gasevo GmbH, Clausthal-Zellerfeld, Germany

Paper No. GT2012-68180, pp. 41-50; 10 pages
doi:10.1115/GT2012-68180
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4469-4
  • Copyright © 2012 by ASME

abstract

A novel electrical energy storage system based on cryogenic liquid nitrogen as storage medium was developed and investigated in order to integrate fluctuating wind energy into the electrical grid. In times of surplus electric power from wind turbines the electrical energy is used to generate very cold liquid nitrogen with an air separation unit which will be stored in cryogenic tanks. In times of electricity demand the energy which is stored in the coldness of the liquid nitrogen will be transferred into electrical energy by a Rankine cycle. The external heat input is solely supplied from the ambience because all changes of state of this cryogenic Rankine cycle are below the ambient temperature level. The cycle drives an expansion turbine for power generation with a power of 10 MW.

In this work two variants of the cryogenic Rankine cycle are presented.

The thermodynamic analyses show that the volumetric energy density of this liquid nitrogen energy storage system (LINESS) amounts > 50 kWh/m3, which is much higher than of many alternative energy storage systems. But the overall efficiency of this storage system is moderate and amounts 13%.

The investigations also show that the technical feasibility of the turbine is given, but a standard steam turbine cannot be adopted for this cycle. The main advantage of this novel storage system compared to compressed air or hydrogen power storage systems is that it can be built independent of geological premises due to the high volumetric energy density.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In