0

Full Content is available to subscribers

Subscribe/Learn More  >

Demonstration of Simultaneous Temperature and Power Control in a Simulation Facility for a SOFC Hybrid System

[+] Author Affiliations
Francesco Caratozzolo, Mario L. Ferrari, Alberto Traverso, Aristide F. Massardo

University of Genoa, Genova, Italy

Paper No. GT2012-69488, pp. 299-307; 9 pages
doi:10.1115/GT2012-69488
From:
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4469-4
  • Copyright © 2012 by ASME

abstract

This study is based on a complete hybrid system emulator test rig developed at the University of Genoa (Savona laboratory) by the Thermochemical Power Group (TPG). The plant is mainly composed of a 100 kW recuperated micro gas turbine coupled with both anodic and cathodic vessels for high temperature fuel cell emulation. The test rig was recently equipped with a real-time model for emulating components not physically present in the laboratory (SOFC block, reformer, anodic circuit, off-gas burner, cathodic blower). This model is used to fully evaluate thermodynamic and electrochemical performance related to solid oxide fuel cell systems. Using a UDP based connection with the test rig control and acquisition software, it generates a real-time hardware-in-the-loop (HIL) facility for hybrid system emulation. Temperature, pressure and air mass flow rate at the recuperator outlet (downstream of the compressor) and rotational speed of the machine are inputs from the plant to the model. The turbine outlet temperature (TOT) calculated by the model is fed into the machine control system and the turbine electric load is moved to match the model TOT values.

In this study various tests were carried out to characterize the interaction between the experimental plant and the real-time model; double step and double ramp tests of current and fuel provided the dynamic response of the system.

The control system proved to be fast, compared to the slow thermal response of the SOFC stack, and also reliable. The hybrid systems operated at 90% of nominal power with electrical efficiency of about 56% based on natural gas LHV.

Copyright © 2012 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In