Full Content is available to subscribers

Subscribe/Learn More  >

Demonstration of Supercritical CO2 Closed Regenerative Brayton Cycle in a Bench Scale Experiment

[+] Author Affiliations
Motoaki Utamura

Tokyo Institute of Technology, Tokyo, Japan

Hiroshi Hasuike, Kiichiro Ogawa

The Institute of Applied Energy, Tokyo, Japan

Takashi Yamamoto, Toshihiko Fukushima

Thermal Engineering & Development Co., Ltd., Yokohama, Kanagawa, Japan

Toshinori Watanabe, Takehiro Himeno

University of Tokyo, Tokyo, Japan

Paper No. GT2012-68697, pp. 155-164; 10 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4469-4
  • Copyright © 2012 by ASME


Power generation with a supercritical CO2 closed regenerative Brayton cycle has been successfully demonstrated using a bench scale test facility. A set of a centrifugal compressor and a radial inflow turbine of finger top size is driven by a synchronous motor/generator controlled using a high-speed inverter. A 110 W power generating operation is achieved under the operational condition of rotational speed of 1.15kHz, CO2 flow rate of 1.1 kg/s, and respective thermodynamic states (7.5 MPa, 304.6 K) at compressor and (10.6 MPa, 533 K) at turbine inlet. Compressor work reduction owing to real gas effect is experimentally examined. Compressor to turbine work ratio in supercritical liquid like state is measured to be 28% relative to the case of ideal gas. Major loss of power output is identified as rotor windage. It is found the isentropic efficiency depends little on compressibility coefficient. Off design performance of gas turbine working in supercritical state is well predicted by a Meanline program. The CFD analysis on compressor internal flow indicates that the presence of backward flow around the tip region might create a locally depressurized region leading eventually to the onset of flow instability.

Copyright © 2012 by ASME
Topics: Brayton cycle



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In