Full Content is available to subscribers

Subscribe/Learn More  >

Obtaining Bifurcation Diagrams With a Thermoacoustic Network Model

[+] Author Affiliations
Giovanni Campa

Politecnico di Bari, Bari, Italy

Matthew P. Juniper

University of Cambridge, Cambridge, UK

Paper No. GT2012-68241, pp. 167-177; 11 pages
  • ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
  • Volume 2: Combustion, Fuels and Emissions, Parts A and B
  • Copenhagen, Denmark, June 11–15, 2012
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4468-7
  • Copyright © 2012 by ASME


Linear techniques can predict whether the non-oscillating (steady) state of a thermoacoustic system is stable or unstable. With a sufficiently large impulse, however, a thermoacoustic system can reach a stable oscillating state even when the steady state is also stable. A nonlinear analysis is required to predict the existence of this oscillating state. Continuation methods are often used for this but they are computationally expensive.

In this paper, an acoustic network code called LOTAN is used to obtain the steady and the oscillating solutions for a horizontal Rijke tube. The heat release is modelled as a nonlinear function of the mass flow rate. Several test cases from the literature are analysed in order to investigate the effect of various nonlinear terms in the flame model. The results agree well with the literature, showing that LOTAN can be used to map the steady and oscillating solutions as a function of the control parameters. Furthermore, the nature of the bifurcation between steady and oscillating states can be predicted directly from the nonlinear terms inside the flame model.

Copyright © 2012 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In