Full Content is available to subscribers

Subscribe/Learn More  >

A Partially Validated Finite Element Whole-Body Human Model for Organ Level Injury Prediction

[+] Author Affiliations
Chirag S. Shah, Jong B. Lee, Warren N. Hardy, King H. Yang

Wayne State University

Paper No. IMECE2004-61844, pp. 71-79; 9 pages
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Transportation: Transportation and Environment
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Transportation
  • ISBN: 0-7918-4722-5 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME


A finite element whole-body human model, which represents a 50th percentile male, was developed by integrating three detailed human component models previously developed at Wayne State University (WSU): a thorax model with detailed representation of the great vessels [1], an abdomen model [2], and a shoulder model [3]. This new model includes bony structures such as scapulae, clavicles, the vertebral column, rib cage, sternum, sacrum, and illium and soft tissue organs such as the heart, lungs, trachea, esophagus, diaphragm, kidneys, liver, spleen, and all major blood vessels including the aorta. In addition to model validations already reported at the component level, the new whole-body model was further validated against two sets of experimental data reported by Hardy [4]. In these experiments, human cadavers were loaded either by a seatbelt or by a surrogate airbag about the mid-abdomen, approximately at the level of umbilicus. It is believed that exercising a validated human model is an inexpensive and efficient way to examine potential injury mechanisms. In some cases, this can provide insight into the design of subsequent laboratory experiments.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In