0

Full Content is available to subscribers

Subscribe/Learn More  >

Mitigating Crew Health Degradation During Long-Term Exposure to Microgravity Through Countermeasure System Implementation

[+] Author Affiliations
Jeremy M. Gernand

Science Applications International Corporation (SAIC)

Paper No. IMECE2004-59029, pp. 155-162; 8 pages
doi:10.1115/IMECE2004-59029
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Engineering/Technology Management: Safety Engineering and Risk Analysis, Technology and Society, Engineering Business Management
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Safety Engineering and Risk Analysis Division, Technology and Society Division, and Management Division
  • ISBN: 0-7918-4720-9 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

Experience with the International Space Station (ISS) program demonstrates the degree to which engineering design and operational solutions must protect crewmembers from health risks due to long-term exposure to the microgravity environment. Risks to safety and health due to degradation in the microgravity environment include crew inability to complete emergency or nominal activities, increased risk of injury, and inability to complete safe return to the ground due to reduced strength or embrittled bones. These risks without controls slowly increase in probability for the length of the mission and become more significant for increasing mission durations. Countermeasures to microgravity include hardware systems that place a crewmember’s body under elevated stress to produce an effect similar to daily exposure to gravity. The ISS countermeasure system is predominately composed of customized exercise machines. Historical treatment of microgravity countermeasure systems as medical research experiments unintentionally reduced the foreseen importance and therefore the capability of the systems to function in a long-term operational role. Long-term hazardous effects and steadily increasing operational risks due to non-functional countermeasure equipment require a more rigorous design approach and incorporation of redundancy into seemingly nonmission-critical hardware systems. Variations in the rate of health degradation and responsiveness to countermeasures among the crew population drastically increase the challenge for design requirements development and verification of the appropriate risk control strategy. The long-term nature of the hazards and severe limits on logistical re-supply mass, volume and frequency complicates assessment of hardware availability and verification of an adequate maintenance and sparing plan. Design achievement of medically defined performance requirements by microgravity countermeasure systems and incorporation of adequate failure tolerance significantly reduces these risks. Future implementation of on-site monitoring hardware for critical health parameters such as bone mineral density would allow greater responsiveness, efficiency, and optimized design of the countermeasures system.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In