Full Content is available to subscribers

Subscribe/Learn More  >

Wave Rotor Combustor Test Rig Preliminary Design

[+] Author Affiliations
Berrak Alparslan

Purdue University

M. Razi Nalim

Purdue University-Indianapolis

Philip H. Snyder

Allison Advanced Development Company

Paper No. IMECE2004-61795, pp. 177-185; 9 pages
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Process Industries
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Process Industries Division
  • ISBN: 0-7918-4717-9 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME


Pressure gain combustion in a wave rotor approaching the thermodynamic ideal of constant volume combustion has been proposed to significantly enhance the performance of gas turbine engines. A computational and experimental program is currently being conducted to investigate the combustion process and performance of a wave rotor with detonative and near-detonative internal combustion. An innovative and flexible preliminary design of the test rig is presented to demonstrate the operation and performance of the system. A preliminary design method based on a sequence of computational models is used to design wave processes for testing in the rig and to define rig geometry and operating conditions. The operating cycle allows for propagation of the combustion front from the exit end of the combustion channel to the inlet end. This is similar to and motivated by the Constant Volume Combustor (CVC) concept that seeks to produce a relatively uniform set of outflow conditions in both spatial and time coordinates.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In