Full Content is available to subscribers

Subscribe/Learn More  >

Performance Benefits of R718 Turbo-Compression Cycle Using 3-Port Condensing Wave Rotors

[+] Author Affiliations
Amir A. Kharazi, Pezhman Akbari, Norbert Müller

Michigan State University

Paper No. IMECE2004-60992, pp. 167-176; 10 pages
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Process Industries
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Process Industries Division
  • ISBN: 0-7918-4717-9 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME


A number of technical challenges have often hindered the economical application of refrigeration cycles using water (R718) as refrigerant. The novel concept of condensing wave rotor provides a solution for performance improvement of R718 refrigeration cycles. The wave rotor implementation can increase efficiency and reduce the size and cost of R718 units. The condensing wave rotor employs pressurized water to pressurize, desuperheat, and condense the refrigerant vapor — all in one dynamic process. In this study, the underlying phenomena of flash evaporation, shock wave compression, desuperheating, and condensation inside the wave rotor channels are described in a wave and phase-change diagram. A computer program based on a thermodynamic model is generated to evaluate the performance of R718 baseline and wave-rotor-enhanced cycles. The detailed thermodynamic approach for the baseline and the modified cycles is described. The effect of some key parameters on the performance enhancement is demonstrated as an aid for optimization. A generated performance map summarizes the findings.

Copyright © 2004 by ASME
Topics: Waves , Rotors , Compression , Cycles



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In