0

Full Content is available to subscribers

Subscribe/Learn More  >

Ultrasonic Signal Attenuation in Syntactic Foams Filled With Rubber Particles

[+] Author Affiliations
Phani Mylavarapu, Rahul Maharsia

Louisiana State University

Guoqiang Li, Eyassu Woldesenbet

Southern University

Nikhil Gupta

Polytechnic University

Paper No. IMECE2004-59375, pp. 25-29; 5 pages
doi:10.1115/IMECE2004-59375
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Nondestructive Evaluation Engineering
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Nondestructive Evaluation Engineering Division
  • ISBN: 0-7918-4716-0 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

Ultrasonic imaging is a non-destructive evaluation technique, which is used to obtain density profile, phase distribution and three-dimensional profiles of cracks and defects in a material. Although this technique is used for a variety of metals and non-metals, it is difficult to use it for testing of porous materials and foams due to high attenuation of ultrasonic waves in these materials. Syntactic foams are hollow particle filled composites that have recently emerged as attractive material for use in applications requiring low weight, low moisture absorption and high insulation properties. The present paper focuses on determining the attenuation coefficient in syntactic foams and its correlation with porosity distribution. Eight types of foam samples are tested in the study. A combination of four types of microballoons and two types of rubber particles is used. Volume fractions of microballoons and rubber particles are maintained at 0.63 and 0.02, respectively, in all samples. Pulse Echo ultrasonic test method is used and results are compared to determine the effect of constituent particles on the ultrasound signal attenuation. Coefficient of attenuation is observed to increase with decrease in density of foam samples and with decrease in size of rubber particles.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In