0

Full Content is available to subscribers

Subscribe/Learn More  >

Review of Two Numerical Approaches to Predict Nonlinear Airfoil Response to High-Amplitude Incident Gust

[+] Author Affiliations
Vladimir V. Golubev

Embry-Riddle Aeronautical University

Paper No. IMECE2004-61407, pp. 165-175; 11 pages
doi:10.1115/IMECE2004-61407
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Noise Control and Acoustics
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Noise Control and Acoustics Division
  • ISBN: 0-7918-4715-2 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

In this work, two different numerical methods of time-accurate nonlinear analysis are reviewed and compared in application to the problem of nonlinear unsteady aerodynamic and aeroacoustic airfoil responses to a high-intensity impinging gust. The incident perturbation field is of finite amplitude relative to the mean flow so that in general, no assumption of a linear superposition of responses from each individual harmonic can be made. Thus, in addition to providing a comparison of two different approaches in computational aeroacoustics, the paper achieves the objective of obtaining verified solutions determining the limits of validity for linearized methods, universally accepted in studies of unsteady aerodynamics and aeroacoustics. The work investigates nonlinear near- and far-field responses of a Joukowksi airfoil in the parametric space of gust intensity and frequency.

Copyright © 2004 by ASME
Topics: Airfoils

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In