Full Content is available to subscribers

Subscribe/Learn More  >

Activation Energy Measurement in Thin Gold Film by MEMS-Based Tensile Testing Device

[+] Author Affiliations
Jong H. Han, Taher M. Saif

University of Illinois at Urbana-Champaign

Paper No. IMECE2004-61385, pp. 187-190; 4 pages
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Materials
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Materials Division
  • ISBN: 0-7918-4712-8 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME


In this paper, we report a methodology to measure activation energy for time-dependent stress-relaxation in a thin free-standing tensile specimen by utilizing a MEMS-based tensile testing device. An analytical model is developed to investigate its stress-relaxation behavior. Along with this analytical model of the MEMS tensile tester, Arrhenius relation is applied to estimate relaxation times for different temperatures of a free-standing sample beam. From the relation between relaxation time and temperature, the activation energy for the stress-relaxation is obtained. For a 200-nm Au film, we obtained the relaxation time of 250, 67, and 40 seconds for the corresponding temperatures of 295, 312, and 323 K, respectively. The activation energy for stress-relaxation was 0.544 eV. The experimental data is fitted with the analytical model to find the relaxation time. The thin film on the MEMS tensile tester is prepared by sputter-deposition. By optical lithography and ICP DRIE Si etching, the MEMS tensile tester with a free standing beam is fabricated.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In