0

Full Content is available to subscribers

Subscribe/Learn More  >

Swirling Flow of a Viscoelastic Fluid With Free Surface: Part I — Experimental Analysis of Vortex Motion by PIV

[+] Author Affiliations
Jinjia Wei, Fengchen Li, Bo Yu, Yasuo Kawaguchi

National Institute of Advanced Industrial Science and Technology

Paper No. IMECE2004-59674, pp. 813-819; 7 pages
doi:10.1115/IMECE2004-59674
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Fluids Engineering
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4709-8 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

The swirling flows of water and CTAC (cetyltrimethyl ammonium chloride) surfactant solutions in an open cylindrical container with a rotating disc at the bottom were experimentally investigated by use of a double-pulsed PIV (particle image velocimetry) system. The mass concentrations of CTAC solutions were in the range of 50–1000 ppm, and the Reynolds number based on angular velocity, kinematic viscosity of water and radius of rotating disc was fixed at 4.3 × 104 . The aspect ratio of the height of the liquid filled into the cylindrical vessel to the radius of the vessel was set to 1.0. The secondary flow patterns in the meridional plane and the tangential velocities were obtained. The flow pattern in the meridional plane for water at the present high Reynolds number differed greatly from that at low Reynolds numbers, and an inertia-driven vortex was pushed to the corner between the free surface and the cylindrical wall by a counter-rotating vortex caused by vortex breakdown. For the 1000-ppm surfactant solution flow, the inertia-driven vortex located at the corner between the bottom and the cylindrical wall whereas an elasticity-driven reverse vortex governed the majority of the flow field. The radial distributions of the time-averaged tangential velocities also differed for water and surfactant solutions. The rotation of the fluid caused a deformation of the free surface with a dip at the center. The dip was largest for the water case and decreased with increasing surfactant concentration.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In