Full Content is available to subscribers

Subscribe/Learn More  >

An Automated System for Controlling the Laminar Flow Interface in a Microfluidic System

[+] Author Affiliations
Brandon Kuczenski, Philip R. LeDuc, William C. Messner

Carnegie Mellon University

Paper No. IMECE2004-61652, pp. 405-409; 5 pages
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Fluids Engineering
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4709-8 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME


The interface between adjacent laminar flow streams in the output channel of a Y-shaped confluent microfluidic network is useful for investigating the response of individual living cells to steep chemical gradients. This paper reports the design and performance of an automated pressure-feedback system for accurately and rapidly changing the position of that interface. The device will be employed to investigate the dynamic response of cells to time-varying chemical stimulation. The system works by controlling the pressure difference between the two adjoining inputs of the microfluidic network, altering the relative flow rate of the laminar streams in the output microchannel. Continuity of incompressible fluids dictates that the plane of the interface between the two streams will move from side to side as the flow rates change. The sample-data control system samples a temperature-compensated monolithic piezoresistive pressure sensor at 1 kilohertz, allowing the control of high-bandwidth microfluidic systems. This automated system enables long-duration, high-precision experiments that involve time-varying parameters to be performed simply, rapidly, and inexpensively.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In