0

Full Content is available to subscribers

Subscribe/Learn More  >

Reliability of BGA and CSP on Metal-Backed Printed Circuit Boards in Harsh Environments

[+] Author Affiliations
Pradeep Lall, Nokibul Islam, Jeff Suhling

Auburn University

Paper No. IMECE2004-62320, pp. 435-443; 9 pages
doi:10.1115/IMECE2004-62320
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4707-1 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

In this study, the effect of metal-backed boards on the interconnect reliability has been evaluated. Previous studies on electronic reliability for automotive environments have addressed the damage mechanics of solder joints in plastic ball-grid arrays on non-metal backed substrates [Lall et. al 2003, Syed et. al 1996, Evans et. al 1997, Mawer et. al 1999] and ceramic BGAs on non-metal backed substrates [Darveaux et. al 1992, 1995, 2000]. Delamination of PCBs from metal backing has also been investigated. Increased use of sensors and controls in automotive applications has resulted in significant emphasis on the deployment of electronics directly mounted on the engine and transmission. Increased shock, vibration, and higher temperatures necessitate the fundamental understanding of damage mechanisms which will be active in these environments. Electronics typical of office benign environments uses FR-4 printed circuit boards. Automotive application typically use high glass-transition temperature laminates such as FR4-06 glass/epoxy laminate material (Tg = 164.9°C). In application environments, metal-backing of printed circuits boards is being targeted for thermal dissipation, mechanical stability and interconnections reliability. The test vehicle is a metal backed FR4-06 laminate. The printed circuit board has an aluminum metal backing, attached with pressure sensitive adhesive (PSA). Component architectures tested include – plastic ball grid array devices, C2BGA devices, QFN, and discrete resistors. Reliability of the component architectures has been evaluated for HASL. Crack propagation and intermetallic thickness data has been acquired as a function of cycle count. Reliability data has been acquired on all these architectures. Material constitutive behavior of PSA has been measured using uni-axial test samples. The measured constitutive behavior has been incorporated into non-linear finite element simulations. Predictive models have been developed for the dominant failure mechanisms for all the component architectures tested.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In