0

Full Content is available to subscribers

Subscribe/Learn More  >

Prognosis Methodologies for Health Management of Electronics and MEMS Packaging

[+] Author Affiliations
Pradeep Lall, Nokibul Islam, Kaysar Rahim, Jeff Suhling

Auburn University

Paper No. IMECE2004-62319, pp. 227-236; 10 pages
doi:10.1115/IMECE2004-62319
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4707-1 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

The current state-of-art in managing system reliability is geared towards the development of life-prediction models for unaged pristine materials under known loading conditions based on relationships such as the Paris’s Power Law [Paris, et. al 1960, 1961], Coffin-Manson Relationship [Coffin 1954; Tavernelli, et. al. 1959; Smith, et. al. 1964; Manson, et. al. 1964] and the S-N Diagram. There is need for methods and processes which will allow interrogation of complex systems and sub-systems to determine the remaining useful life prior to repair or replacement. This capability of determination of material or system state is called “prognosis”. In this paper, a methodology for prognosis-of-electronics has been demonstrated with data of leading indicators of failure for accurate assessment of product damage significantly prior to appearance of any macro-indicators of damage. Proxies for leading indicators of failure have been developed including – micro-structural evolution characterized by average phase size and interfacial stresses at interface of silicon structures. Structures examined include – electronics package, MEMS Packages and interconnections on a metal backed printed circuit board typical of electronics deployed in harsh environments. Since, an aged material knows its state the research presented in this paper focuses on enhancing the understanding of material damage to facilitate proper interrogation of material state. Mathematical relationship has been developed between phase growth rate and time-to-1-percent failure to enable the computation of damage manifested and a forward estimate of residual life.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In