0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Evaluation of SnAgCu and SnPb Solders Using a MicroBGA Under Accelerated Temperature Cycling Conditions

[+] Author Affiliations
Bryan Rodgers, Jeff Punch, Claire Ryan

University of Limerick

Finbarr Waldron, Liam Floyd

National Microelectronics Research Centre

Paper No. IMECE2004-59684, pp. 153-159; 7 pages
doi:10.1115/IMECE2004-59684
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4707-1 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

A comparative evaluation of the leading lead-free solder candidate (95.5Sn3.8Ag0.7Cu) and traditional tin-lead solder (63Sn37Pb) under thermal cycling conditions was carried out. A test vehicle consisting of four daisy chained 10×10 array 0.8mm pitch plastic micro ball grid arrays (microBGA) mounted on an 8-layer FR4 printed wiring board was designed. The board finish was organic solder preservative (OSP) for the lead-free devices and hot air solder levelled (HASL) in the case of the eutectic devices. An event detector was used to monitor the continuity of each daisy chain during accelerated temperature cycling, where the test vehicles were cycled with a ramp rate of approximately 3°C per minute from −40°C to 125°C, with 10-minute dwells and a total cycle time of 2 hours 10 minutes. Results to date plotted using a Weibull distribution indicate that the SnAgCu solder is more reliable under these conditions. Experiments were also carried out on large-scale lead-free solder specimens to determine the parameters required for the Anand viscoplasticity model. The Anand model was then implemented in finite element analysis using ANSYS® , where the submodelling technique was employed to determine the viscoplastic work per thermal cycle for each solder joint along the package diagonal. Schubert’s fatigue life model was used to predict the number of cycles to failure of each joint, although it should be noted that the necessary model parameters for the may need to be calibrated. Results indicate that the joint under the die edge is likely to fail first and that the SnAgCu solder is more fatigue resistant. The numerical predictions underestimate the fatigue life in both cases.

Copyright © 2004 by ASME
Topics: Temperature , Solders

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In