Full Content is available to subscribers

Subscribe/Learn More  >

Molecular Dynamics Study of Thermal Boundary Resistance: Evidence of Strong Inelastic Scattering Transport Channels

[+] Author Affiliations
Robert J. Stevens, Pamela M. Norris, Leonid V. Zhigilei

University of Virginia

Paper No. IMECE2004-60334, pp. 37-46; 10 pages
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4707-1 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME


With the ever-decreasing size of microelectronics, growing applications of superlattices, and development of nanotechnology, thermal resistances of interfaces are becoming increasingly central to thermal management. Although there has been much success in understanding thermal boundary resistance (TBR) at low temperature, the current models for room temperature TBR are not adequate. This work examines TBR using molecular dynamics (MD) simulations of a simple interface between two FCC solids. The simulations reveal a temperature dependence of TBR, which is an indication of inelastic scattering in the classical limit. Introduction of point defects and lattice-mismatch-induced disorder in the interface region is found to assist the energy transport across the interface. This is believed to be due to the added sites for inelastic scattering and optical phonon excitation. A simple MD experiment was conducted by directing a phonon wave packet towards the interface. Inelastic scattering, which increases transport across the interface, was directly observed. Another mechanism of energy transport through the interface involving localization of optical phonon modes at the interface was also revealed in the simulations.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In